Experiences with simulated robot soccer as a teaching tool

Rhys Hill

Anton van den Hengel

School of Computer Science
University of Adelaide,
Adelaide, South Australia 5005,
Email: {rhys, anton}@cs.adelaide.edu.au

Abstract

The development of assignments for undergraduate
teaching typically requires a compromise between what is
achievable by an average student and what will engage the
interest of a more advanced member of the class. Selecting
a suitable compromise is particularly problematic for un-
dergraduate Artificial Intelligence (Al) courses which typi-
cally attempt to cover a very broad range of topics, without
delving too deeply into the details. Ideally, a single prob-
lem would be selected whose solution could be approached
with more than one technique covered in the course, en-
abling students to carry out a comparative analysis of per-
formance.

Robot soccer simulation has provided an interesting
platform for Artificial Intelligence research and is increas-
ingly being used as a teaching apparatus. There are a num-
ber of limitations with existing simulation methodologies
for this purpose. Current robot soccer simulators are aimed
at research groups where accuracy is paramount and all
facets of the real system must be emulated. However, many
of the intricacies of a real robot soccer player are inappro-
priate for a teaching environment, as they detract from de-
sired learning outcomes. Consequently, there is a need for
a simulation that employs a simplified set of game rules and
dynamics. This paper describes the design and implemen-
tation of such a framework and presents experiences gained
from its use as a third year practical.

1. Introduction

Developing artifical intelligence practicals for under-
graduate students can be difficult. Interesting problems gen-
erally require a large amount of base software be provided
to the student, before they can begin working. Simpler
problems often fail to engage the student, reducing partici-
pation and learning.

Recently, many Computer Science Schools have started
drawing upon simulated environments or activities as the

basis for student practicals[1]. Obvious areas for such sim-
ulations include sport, war games and gambling. Many of
these cannot be used at a University due to possible cultural
sensitivities. Of the three examples provided, sport is the
most inclusive.

Separately, robot soccer is a burgeoning research area,
with many Universities participating in international tour-
naments. Part of the reason for this growth is the excitement
associated with competition and the hands-on nature of the
area. These aspects of robot soccer make it an ideal basis
for undergraduate practicals. However, supplying a large
number of students with access to real robot soccer players
is intractable, instead a simulation is more appropriate.

A number of robot soccer simulators are currently avail-
able [4, 2, 3]. Unfortunately the majority of these simulators
tend to be unsuitable for the purpose of teaching artificial in-
telligence. One major problem is the existence of example
players or ‘brains’ available for download. It becomes very
difficult to determine what is original student work if a large
number of example solutions are available. Moreover, exist-
ing simulators are often complicated to learn and to use [1],
thus deflecting students from the pedagogical aims towards
technical problems.

This paper reports on the design and implementation of a
robot soccer simulation framework and communicates some
of the lessons learned. A simplified model for simulated
robot soccer is presented, along with the details of its imple-
mentation. By combining this model and careful software
design, the resultant system provided fertile ground for stu-
dent exploration.

2. Requirements

Artificial Intelligence is a third year subject at the Uni-
versity of Adelaide, with a typical enrolment of 180 stu-
dents. The assessment for the subject consists of two prac-
ticals and an exam. The framework presented in this paper
formed the basis of both practicals in 2004. Section 3 pro-
vides details on these practicals, while the remainder of this
section discusses design and implementation.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05)
0-7695-2316-1/05 $20.00 © 2005 IEEE

2.1. The Soccer Model

The model employed by the framework is based loosely
on RoboCup rules [5]. By limiting particular behaviours of
the field, ball and players, many of the more difficult aspects
of playing soccer are removed.

The field is a discrete plane; the ball and players may
only be positioned at integer locations (See figure 1). Each
player can move in any one of eight directions from their
current position. Player can stand on the edge of the field,
but the ball cannot. This prevents situations where the ball
might get stuck. The ball bounces off the edges of the field,
rather than going out of bounds. If this occurs in the goal
area, a point is scored. The size of the field is variable;
ball and player speeds are fixed at one unit per turn. The

Figure 1. Game play screen shot

simulation proceeds as a turn based game. Each player takes
their turn in order, with control switching between teams at
each turn. Section 2.4 provides more detail on the exact
mechanism employed to controls turns. Each player can
execute one of ten moves per turn. They may move from
their current position to any neighbouring position, stay still
or kick the ball. Kicking the ball only succeeds if the player
is within one unit of its current position. The balls’ direction
will then be determined by its position relative to the player.
After each player kicks the ball, it goes into the air for one
unit, and will remain there until it moves over a clear patch
of the field. Once it lands, the ball will continue to move for
3 units, unless it hits an obstacle. When a goalie kicks the
ball, it stays in the air for a minimum of three units. If the
ball hits a player, it will stop.

2.2. Implementation Requirements

The majority of students enrolled in Artificial Intelli-
gence have been taught to program in Java, making it
the language of choice for the framework. Java’s cross-
platform capabilities are also appealing, as students are re-
quired to use both Unix and Macintosh systems with the
School, with many using Microsoft Windows at home.

The framework was constructed such that it could be
reused many times and extended to fit new requirements. In

particular, it was hoped that the framework could form the
core of all practicals for the next few years. A second desir-
able feature was the ability to change the decisions making
mechanism the students were required to employ. To this
end, the simulator engine was carefully structured to be as
flexible as possible and provides numerous options for con-
figuring its behaviour.

In the 2004 course, students were required to implement
two decision making algorithms; minimax and a solution
driven by a genetic algorithm. The prevention of cheating
was also a key concern, which meant preventing access to
particular data and careful structuring of important sections
of the framework. The overall layout of the framework is
shown in Figure 2. Note that all players execute their code
in a separate thread, along with the core of the simulator
itself. Section 2.4 will discuss this in more detail.

Field

Team A Team B

[Goalie] [Goalie]

Figure 2. This figure shows the dependence of var-
ious framework structures on one-another. Those
entities shown with thick outlines are executed in
their own thread.

[Player] [Player]

2.3. Player Hierarchy

To run within the simulator, student solutions must
fit into the Player class hierarchy. A simple base class,
Player, provides the minimal amount of code required
to be a player. Students develop players that may compete
in a soccer match by extending this class. A key aspect of
Player is an abstract method called haveTurn, in which
the students’ decision making code must be written. How-
ever, for some decision making mechanisms, a simple base
class is unsuitable. Section 3 provides some examples of
this scheme.

2.4. Execution Modes

Real-time control is an important facet of robot soccer,
requiring timely completion of searches and decision mak-
ing algorithms. The framework satisfies this need by al-
lowing the specification of execution constraints, in partic-
ular enforcing a time limit on each players’ decision making
mechanism.

Executing decision making code in a thread is a simple
solution to this problem. In theory, each thread can be killed
or suspended after the allowed time has elapsed. Unfortu-

YFF.F.

COMPUTER
SOCIETY

Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05)
0-7695-2316-1/05 $20.00 © 2005 IEEE

nately, Java does not provide these mechanisms, except
via deprecated methods. Moreover, Java’s implementa-
tion uses exceptions, meaning player code could still pre-
vent thread suspension, thus avoiding time restrictions. In-
stead, each player is given a certain amount of time to eval-
uate their decision. If this time is exceeded, their decision
will not be executed during the current turn, and control is
passed immediately to the next player. Figure 3 shows an
example of this scheme. This scheme is implemented in the

Execution time
| —

Turn time

Team A 11 [I] [T
Pt ——t—t —t
[[[
[E—
One turn

Team B

Figure 3. Execution model diagram

following fashion. Each player is given allocated a game
thread, which contains a simple loop, shown in Algorithm 1.
Each thread has its own semaphore, initialised to zero. By
incrementing the semaphore, the main thread can control
the time at which each player’s turn begins. The main thread
then sleeps until the time quanta has expired and checks if
the player has completed their turn. If not, control moves
to the next player, and the current player misses their op-
portunity to move. In this case, the first player is at a large
disadvantage, as they are stationary for one turn. Once they
complete the required computation, the resultant move will
be executed. However, it will be based on stale state infor-
mation, as most players will take a snapshot of the board
state at the start of their turn. If the player has successfully
completed their move, the state of the field is updated, and
the next player begins their turn.

Algorithm 1 Player thread execution
while Game not over do
Decrement semaphore
Make decision (Execute the students code)
Apply decision at end of turn
end while

An obvious fault in this scheme is that if the current
player does not complete their turn, the next player does not
have full control of the CPU, reducing the amount of work
they can do in their allocated time. Solving this problem
is difficult, but may be addressed in the future. The effect
on game results is negligible, as both players are equally
effected.

3. Applications

In the 2004 offering of Al the framework was used for
two practicals. The first was based on minimax, the sec-

ond on genetic algorithms. This section explores how the
framework was employed and extended for each topic.

3.1. Minimax

Minimax is a well known heuristic-based search
algorithm[6]. In the context of robot soccer, the right heuris-
tic can produce intelligent behaviour. A well-known disad-
vantage of minimax that it requires a large number of node
expansions - n*, where k is the number of available moves
per turn, and n is the level of look-ahead required. The robot
soccer framework provides a number of ways to reduce the
values of both n and k. One of the aims of the practical was
for students to develop further minimisation strategies.

The model reduces k& by only allowing ten different
moves from any position on the board. Students could re-
duce this number further by careful selection of the moves
to expand. Simply not attempting to kick the ball when it
is too far away reduces k to 9 in most cases. Similarly, a
player need not expand moves in all directions, since some
may not be useful. For instance, when the ball is in front of
the player there is no need to evaluate moves which take the
player backwards.

To look-ahead ¢ turns, n = t x 2p levels must be ex-
panded, where p is the size of each team. If a particular im-
plementation can expand n’ levels within the allotted time,
setting p to 1 will clearly produce the furthest look-ahead.
However, having one player per team would not provide a
very exciting game. Thus, a goalie was added to each team.
The goalies were given entirely deterministic behaviour, al-
lowing them to be omitted from the minimax tree.

A second common problem with minimax is that of
deadlock. If two players can perfectly predict where the
other will move, minimax will always collapse into dead-
lock, as it has the least-bad outcome for both players. The
framework greatly reduces instances of deadlock by insist-
ing that the ball is kicked over players, for at least one unit.
Detecting deadlocked situations and restarting the match
would be a useful feature of a future version of the frame-
work.

3.2. Genetic algorithms

Genetic algorithms formed the basis of the second prac-
tical. Constructing a decision making system with a genetic
algorithm requires two major components; an optimiser and
a cost function. Interpreting the contents of the chromo-
some and designing a suitable cost function were the key
challenges faced by students. Both required careful thought
on the part of each student and necessitated the inclusion of
debugging and testing tools in the overall framework. Un-
fortunately, this task proved to be beyond many students,
necessitating the provision of a second method of assess-
ment. A driver was conceived which was able to test the
optimisation portion of their solution separately. Further,
a series of appropriate test functions were also produced,

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05)
0-7695-2316-1/05 $20.00 © 2005 IEEE

all of which had known solutions. This enabled students to
verify the correctness of their GA optimiser.

A key aspect of the testing and debugging facilities was
the inclusion of a series of players, against whom the stu-
dents could train their own player. During the early stages
of optimisation, it is likely that most chromosomes would
generate poor strategy, making it impossible to win against
a sophisticated opponent. The provision of progressively
more capable opponents allowed the training to proceed in
a gradual fashion, helping to drive the optimisation process.

4. Outcomes

The primary objective for the practical components was
to imbue each student with an understanding of the required
decision making algorithms. However, by adding some ex-
tra aspects to the assignment such as time limited decision
making and using a GA for the second assignment, other
outcomes were also achieved.

4.1. Nightly Tournaments and Competition Ladder

Each students’ player participated in nightly tourna-
ments against all other members of the class. This pro-
vided timely feedback about their performance relative to
the rest of the class. As part of the tournament, a lad-
der was established, charting the performance of each stu-
dent. The ladder encouraged a competitive atmosphere to
develop, which drove students to improve their solution and
thus their ranking. In 2004, a round-robin tournament sys-
tem was selected, in which each player plays against every
other player, n? — n matches in total. This method was
chosen in the interests of fairness, to provide a completely
objective view of performance. However, the run-time of
the tournament was significant. Each match had a 5 minute
time limit set and around 40 students participated in the ini-
tial tournaments. The total run time for this tournament was
thus 8000 hours, clearly far too long. Section 5 discusses
alternate models for the tournament.

Along with the tournaments and the ladder, a bulletin
board system was also employed during 2004. In com-
bination with the ladder, the bulletin board hosted a large
amount of discussion between students, debating various
approaches to each stage of the practical. This discussion
gave rise to clever and insightful solutions to each stage of
the practicals.

4.2. Efficiency

The minimax assignment posed several efficiency chal-
lenges, as the search is order nk, where n is the level of look
ahead, and k is the number of available moves per turn. The
primary approach to timely search completion is to limit
the look ahead to a fairly conservative value. However,
the students discovered that having the maximum possible
look-ahead would greatly increase their chances of winning.
Several discussions were held on the bulletin boards on the

best mechanisms for reducing the time taken by the search.
One optimisation can be made by realising that Java appli-
cations slow down as more objects are allocated and freed,
principally due to garbage collection. By reducing the num-
ber of object allocations, minimax can be made significantly
faster. A naive implementation allocates one object per
node expansion in the tree, resulting in O(n*) objects being
allocated and destroyed in total. However, it is possible to
reduce this number to n, allowing the level of look-ahead to
be increased.

5. Conclusion and future work

This paper has presented a soccer simulation framework
using a simplified game model. Key implementation issues
were discussed, along with experiences from its use in an
undergraduate artificial intelligence course.

Several areas of the frameworks could be improved in
future versions. Improving the mechanism for control-
ling player execution would make the framework fairer and
more predictable. The tournament proves the most impor-
tant area for improvement. The current round-robin scheme
has many positive aspects; it is fair and very simple to im-
plement. However, its execution time is far too long. There
are two solutions to this problem. The first is to retain the
current scheme and distribute the computation. This would
provide a significant decrease in execution time, but would
not improve scalability. The second is to move to a divi-
sion based scheme, such as that employed in many amateur
sports. In this model, the class is broken up into a series of
small groups, consisting of around 10 students, and in each
group a round-robin tournament is held. If a player man-
ages to defeat a significant number of their peers, they will
be moved up into the next division. If they lose against too
many opponents, they will drop. A third option is to treat
the tournament as a sorting problem, where ordering two
players consists of playing a match between them. A sim-
ple sorting method, such as bubble-sort, lends itself to this
application.

References

[1] S. Coradeschi and J. Malec. How to make a challenging Al
course enjoyable using the RoboCup soccer simulation sys-
tem. RoboCup’98: Robot Soccer World Cup II, Lecture Notes
in Artificial Intelligence, (1604), 1999.

[2] T.B. etal. TeamBots. Technical report, 2004.

[3] W. Fikkert and H. Dollen. MiS20 - Robot Soccer Simulator.
Technical report, 2003.

[4] R.S.L.Members. The RoboCup Soccer Simulator. Technical
report, 2004.

[5] M. Technical Committee. Middle Size Robot League Rules
and Regulations for 2004, Draft Version pre-8.2. 2004.

[6] P. H. Winston. Artificial Intelligence. Addison-Wesley, 3™
edition edition, 1993.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Third International Conference on Information Technology and Applications (ICITA'05)
0-7695-2316-1/05 $20.00 © 2005 IEEE

